3.3.61 \(\int \frac {1}{2 x+3 x^{1+n}} \, dx\)

Optimal. Leaf size=22 \[ \frac {\log (x)}{2}-\frac {\log \left (3 x^n+2\right )}{2 n} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 5, number of rules used = 5, integrand size = 13, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.385, Rules used = {1593, 266, 36, 29, 31} \begin {gather*} \frac {\log (x)}{2}-\frac {\log \left (3 x^n+2\right )}{2 n} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(2*x + 3*x^(1 + n))^(-1),x]

[Out]

Log[x]/2 - Log[2 + 3*x^n]/(2*n)

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 1593

Int[(u_.)*((a_.)*(x_)^(p_.) + (b_.)*(x_)^(q_.))^(n_.), x_Symbol] :> Int[u*x^(n*p)*(a + b*x^(q - p))^n, x] /; F
reeQ[{a, b, p, q}, x] && IntegerQ[n] && PosQ[q - p]

Rubi steps

\begin {align*} \int \frac {1}{2 x+3 x^{1+n}} \, dx &=\int \frac {1}{x \left (2+3 x^n\right )} \, dx\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{x (2+3 x)} \, dx,x,x^n\right )}{n}\\ &=\frac {\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,x^n\right )}{2 n}-\frac {3 \operatorname {Subst}\left (\int \frac {1}{2+3 x} \, dx,x,x^n\right )}{2 n}\\ &=\frac {\log (x)}{2}-\frac {\log \left (2+3 x^n\right )}{2 n}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.01, size = 22, normalized size = 1.00 \begin {gather*} \frac {n \log (x)-\log \left (3 x^n+2\right )}{2 n} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(2*x + 3*x^(1 + n))^(-1),x]

[Out]

(n*Log[x] - Log[2 + 3*x^n])/(2*n)

________________________________________________________________________________________

IntegrateAlgebraic [A]  time = 0.03, size = 30, normalized size = 1.36 \begin {gather*} \frac {\log \left (x^n\right )}{2 n}-\frac {\log \left (3 n x^n+2 n\right )}{2 n} \end {gather*}

Antiderivative was successfully verified.

[In]

IntegrateAlgebraic[(2*x + 3*x^(1 + n))^(-1),x]

[Out]

Log[x^n]/(2*n) - Log[2*n + 3*n*x^n]/(2*n)

________________________________________________________________________________________

fricas [A]  time = 0.40, size = 26, normalized size = 1.18 \begin {gather*} \frac {{\left (n + 1\right )} \log \relax (x) - \log \left (3 \, x^{n + 1} + 2 \, x\right )}{2 \, n} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x+3*x^(1+n)),x, algorithm="fricas")

[Out]

1/2*((n + 1)*log(x) - log(3*x^(n + 1) + 2*x))/n

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {1}{3 \, x^{n + 1} + 2 \, x}\,{d x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x+3*x^(1+n)),x, algorithm="giac")

[Out]

integrate(1/(3*x^(n + 1) + 2*x), x)

________________________________________________________________________________________

maple [A]  time = 0.05, size = 32, normalized size = 1.45 \begin {gather*} \frac {\ln \relax (x )}{2}+\frac {\ln \relax (x )}{2 n}-\frac {\ln \left (2 x +3 \,{\mathrm e}^{\left (n +1\right ) \ln \relax (x )}\right )}{2 n} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*x+3*x^(n+1)),x)

[Out]

1/2*ln(x)+1/2/n*ln(x)-1/2/n*ln(2*x+3*exp((n+1)*ln(x)))

________________________________________________________________________________________

maxima [A]  time = 1.32, size = 16, normalized size = 0.73 \begin {gather*} -\frac {\log \left (x^{n} + \frac {2}{3}\right )}{2 \, n} + \frac {1}{2} \, \log \relax (x) \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x+3*x^(1+n)),x, algorithm="maxima")

[Out]

-1/2*log(x^n + 2/3)/n + 1/2*log(x)

________________________________________________________________________________________

mupad [B]  time = 5.23, size = 26, normalized size = 1.18 \begin {gather*} \frac {\ln \relax (x)\,\left (n+1\right )}{2\,n}-\frac {\ln \left (\frac {2\,x}{3}+x^{n+1}\right )}{2\,n} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(2*x + 3*x^(n + 1)),x)

[Out]

(log(x)*(n + 1))/(2*n) - log((2*x)/3 + x^(n + 1))/(2*n)

________________________________________________________________________________________

sympy [A]  time = 1.51, size = 20, normalized size = 0.91 \begin {gather*} \begin {cases} \frac {\log {\relax (x )}}{2} - \frac {\log {\left (x^{n} + \frac {2}{3} \right )}}{2 n} & \text {for}\: n \neq 0 \\\frac {\log {\relax (x )}}{5} & \text {otherwise} \end {cases} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(2*x+3*x**(1+n)),x)

[Out]

Piecewise((log(x)/2 - log(x**n + 2/3)/(2*n), Ne(n, 0)), (log(x)/5, True))

________________________________________________________________________________________